Strict Standards: mktime(): You should be using the time() function instead in /home/simatika/public_html/zooznaika/index.php on line 54

Strict Standards: mktime(): You should be using the time() function instead in /home/simatika/public_html/zooznaika/index.php on line 57
ЗРЕНИЕ, зрение - восприятие организмом внешнего мира, т. е. получение информации о нём, посредством улавливания специальными зрения органами отражаемого или излучаемого объектами света phtybt зрение, энциклопедия биология экология животные растения грибы
Авторизация / Регистрация 

Зрение

Зрение, восприятие организмом внешнего мира, т. е. получение информации о нём, посредством улавливания специальными зрения органами отражаемого или излучаемого объектами света. Аппарат зрения включает периферический отдел, расположенный в глазе (сетчатка, содержащая фоторецепторы и нервные клетки), и связанные с ним центральные отделы (некоторые участки среднего и межуточного мозга, а также зрительная область коры больших полушарий). Зрение позволяет на основе анализа внешних ситуаций организовать целесообразное поведение. С помощью зрения организм получает сведения о направлении отдельных пучков света, их интенсивности и т.д. Свет поглощается фоторецепторами глаза, содержащими зрительный пигмент, преобразующий энергию квантов света в нервные сигналы; от спектра поглощения пигментов зависит диапазон воспринимаемого света. Человек воспринимает электромагнитные излучения в диапазоне длин волн 400-700 нм, некоторые насекомые различают и ультрафиолетовые лучи (до 300 нм), некоторые ящерицы - инфракрасный свет. В процессе эволюции животных зрение прошло сложное развитие: от способности различать лишь степень освещённости (дождевой червь) или направление на источник света (улитка) до многообразного анализа изображения. Своеобразно устроены фасеточные глаза ракообразных и насекомых, дающие "мозаичное" изображение и приспособленные к различению формы близлежащих объектов. Глаза ряда беспозвоночных способны различать плоскость поляризации света. Глаз позвоночных имеет преломляющую свет оптическую систему: роговицу, хрусталик (линзу), стекловидное тело, а также радужную оболочку со зрачком. При помощи специальной мышцы кривизна хрусталика, а следовательно, и его преломляющая сила меняются (аккомодация глаза), что обеспечивает резкость изображения на глазном дне. Внутреннюю поверхность глазного яблока занимает световоспринимающая часть глаза - сетчатка. За фоторецепторами - палочковыми и колбочковыми клетками - следует система из нескольких этажей нервных клеток, анализирующих поступающие от фоторецепторов сигналы. Нервные клетки сетчатки генерируют биоэлектрические потенциалы, которые можно зарегистрировать в виде электроретинограммы. Анализ электрической активности сетчатки и её отдельных элементов - один из важных приёмов изучения её функции и состояния. Наиболее тонко дифференцирующий участок сетчатки глаза человека - так называемое жёлтое пятно и особенно его центральная ямка (фовеа), плотность рецепторов (колбочек) в которой достигает 1,8·105 на 1 мм; обеспечивает высокую пространственную разрешающую способность глаза, или остроту зрения. На периферии сетчатки преобладают палочки, большие группы которых связаны каждая с одной нервной клеткой; острота зрения здесь значительно ниже. Соответственно периферия поля З. служит для общей ориентировки, а центр - для детального рассматривания объектов. Кроме человека и обезьян, фовеа имеется у птиц (у некоторых по 2 в каждом глазу).
У человека, обезьян и рыб обнаружены колбочки с тремя разными кривыми спектральной чувствительности, максимумы которых у человека находятся в фиолетовой, зелёной и жёлтой областях спектра. Согласно теории Юнга - Гельмгольца, трехмерность цветового зрения объясняется тем, что свет разного спектрального состава вызывает в 3 видах колбочек реакции разной интенсивности; это и ведёт к ощущению того или иного цвета. При интенсивном раздражении всех фоторецепторов может получиться ощущение белого цвета. Трёхмерное или двухмерное цветовое зрение свойственно многим позвоночным, а также некоторым насекомым. Важное свойство З. - адаптация физиологическая - приспособление к функционированию в сильно меняющихся условиях освещения, что обеспечивает сохранение высокой контрастной чувствительности глаза, т. е. его способности улавливать небольшие различия в яркости в широком диапазоне освещённостей. Известен ряд механизмов адаптации: изменение диаметра зрачка (диафрагмирование), ретиномоторный эффект (экранирование рецепторов зёрнами светонепроницаемого пигмента), распад и восстановление зрительного пигмента в палочках, перестройка в нервных структурах сетчатки. В сумерках функционирует лишь более чувствительная палочковая система (поэтому отсутствует цветовое зрение и снижена острота З.), при дневном освещении - колбочковая и палочковая. У ночных животных в сетчатке преобладают палочки, у дневных - сетчатка либо смешанная, либо в ней преобладают колбочки. Системы зрения разных животных различаются по инерционности, или временной разрешающей способности. Так, лягушка воспринимает мелькания частотой до 15-20 гц, человек - до 50-60 гц (при ярком освещении), некоторые насекомые (например, муха) - до 250-300 гц.
Различают монокулярное зрение (одним глазом) и бинокулярное, когда поля зрения двух глаз частично перекрываются. Благодаря разнице углов, под которыми рассматривается один и тот же объект обоими глазами, бинокулярность приводит к стереоскопичности восприятия, которая является одним из средств оценки объёмности предметов и расстояний до них. Большую роль в зрении, особенно у высших позвоночных, играют движения глаз, которые осуществляются глазными мышцами, управляемыми из среднего мозга. Движения бывают произвольными и непроизвольными. Последние разделяют на 3 типа: медленный дрейф, высокочастотный тремор (80 гц) и быстрые скачки. Объекты, изображение которых неподвижно относительно сетчатки, человеком не воспринимаются, поэтому без движений глаз зрение практически невозможно.
Сигналы от глаза через зрительный нерв идут по двум основным путям: в средний мозг, который у рыб и земноводных служит высшей инстанцией, т.к. передний мозг у них развит слабо, и в получивший у млекопитающих очень большое развитие передний мозг (через боковое коленчатое тело в затылочную область коры больших полушарий). Переработка зрительных сигналов и анализ изображения осуществляются на всех этажах зрительной системы, в том числе и в сетчатке. У разных животных обнаружены волокна зрительного нерва ("детекторы"), передающие в мозг сигналы о таких специфических свойствах объектов, как их движение, направление движения, наличие в поле зрения тёмного пятнышка или горизонтального края и др. Сигналы детекторов сетчатки, вероятно, используются в среднем мозгу для организации простых, автоматизированных реакций, свойственных поведению низших, а отчасти и высших позвоночных (движения глаз и головы при опасности, при слежении за движущимся объектом и т.д.). Анализ, осуществляющийся в коре больших полушарий, значительно многообразнее и тоньше. Существенное для анализа свойство зрения - его константность, благодаря чему особенности объектов (их окраска, размеры, форма) воспринимаются как постоянные, несмотря на колебания интенсивности и спектрального состава освещения, расстояния до объекта, угла З. и др.





Консультации специалистов