Авторизация / Регистрация 
https://chocolavie.ru/catalog/chocolate_figures/ наборы для шоколадного фондю купить.

Цитогенетика

Цитогенетика (от цито... и генетика), наука, изучающая закономерности наследственности во взаимосвязи со строением и функциями различных внутриклеточных структур. Основной предмет исследований цитогенетики - хромосомы, их морфология, структурная и химическая организация, функции и поведение в делящихся и неделящихся клетках. Как пограничная наука цитогенетика использует методы генетики и цитологии и тесно связана с разделами этих наук - молекулярной генетикой, цитохимией, кариологией, кариосистематикой и др. Подразделяется на общую цитогенетику, изучающую общие клеточные основы наследственности, и Ц. растений, животных, человека.
Цитогенетика возникла в начале 20 в. после переоткрытия в 1900 Менделя законов, в результате поисков цитологических объяснений менделевского расщепления и независимого распределения генов. К этому времени было накоплено значительное количество данных по морфологии хромосом (русский ученый И. Д. Чистяков, 1872, 1874; немецкий ученый Э. Страсбургер, 1875, немецкий ученый В. Флемминг, 1882, 1892) и поведению их в митозе и мейозе (Э. Страсбургер; В. Флемминг; русский ученый П. И. Перемежко, 1878; бельгийский ученый Э. ван Бенеден, 1883; немецкие ученые Т. Бовери, О. Гертвиг, 1884). Было выявлено наличие парного (диплоидного) набора хромосом в соматических (неполовых) клетках и вдвое уменьшенного (гаплоидного) набора в половых клетках и созданы предпосылки для установления связи между хромосомами и "наследственными факторами" Менделя, природа которых не была тогда ясна. В 1902 американский ученый У. Сеттон и немецкий ученый Т. Бовери, обнаружившие связь между передачей из поколения в поколение хромосом и "наследственных факторов" (название впоследствии генами), предположили, что хромосомы являются носителями генов и обеспечивают преемственность признаков в ряду поколений организмов. Основные положения хромосомной теории наследственности, обоснованной и развитой американским генетиком Т. Х. Морганом и его школой, стали теоретическим фундаментом цитогенетики.
В СССР первые цитогенетические исследования были выполнены С. Г. Навашиным. Исследуя метафазные хромосомы растения гальтонии беловатой (Galtonia candicans), С. Г. Навашин установил наличие пары хромосом, обладающих на одном конце маленьким тельцем - спутником, что блестяще подтвердило правильность теории индивидуальности хромосом и непарную их гомологичность (1912). С. Г. Навашину принадлежит также открытие основного принципа строения хромосом из двух плеч, обусловленного прикреплением нитей веретена деления клетки к строго определенного участку хромосомы (1914). Значительную роль в становлении цитогенетики как самостоятельной науки сыграли книги советского ученого Г. А. Левитского "Материальные основы наследственности" (1924) и немецкого ученого К. Белара "Цитологические основы наследственности" (1928, рус. пер. 1934). Фундаментальные работы в области Ц. выполнены советскими учеными Н. К. Кольцовым, А. А. Прокофьевой-Бельговской, Б. Л. Астауровым, Г. Д. Карпеченко и др.
В процессе развития цитогенетики были получены цитологические обоснования явлений расщепления, независимого распределения, сцепления генов и кроссинговера. При изучении поведения хромосом в мейозе установлено, что расщепление признаков в потомстве обеспечивается процессом конъюгации хромосом, в результате расхождения которых в 1 мейотическом делении к разным полюсам клетки гамета содержит одинарный (гаплоидный) их набор вместо двойного (диплоидного), имеющегося в соматических клетках организма. Независимое распределение генов, расположенных в негомологичных хромосомах, обусловлено свободной перекомбинацией в мейозе хромосом, полученных от отца и матери. Подтверждено, что сцепление генов может нарушаться в процессе кроссинговера в результате обмена участками между гомологичными хромосомами, а этот обмен приводит к рекомбинации наследственного материала.
При цитогенетическом анализе процесса конъюгации хромосом обнаружено, что нарушение конъюгации приводит к неправильному расхождению хромосом и образованию гамет с набором хромосом, не кратным гаплоидному, т. е. к анеуплоидии, а это вызывает снижение плодовитости или бесплодие у гибридов (особенно у отдаленных) растений и животных. В 1927 Г. Д. Карпеченко разработал метод восстановления плодовитости гибридов растений, заключающийся в удвоении их хромосомного набора, т. е. в создании организмов-амфидиплоидов. Метод широко используется в селекции растений (большое значение придается пшенично-ржаным амфидиплоидам - тритикале). В 1936 Б. Л. Астауровым получены первые амфидиплоиды у животных (тутовый шелкопряд). Изучение конъюгации хромосом, которая служит показателем генетического родства, позволило японскому цитогенетику Х. Кихаре (1924) разработать один из цитогенетических методов - геномный анализ. Этому анализу были подвергнуты пшеницы, хлопчатники и др. полиплоидные культурные растения и их дикие сородичи, в результате чего удалось установить происхождение многих культурных растений, использовать дикую флору в целях селекции, для обогащения хозяйственно-полезных свойств культурных растений, изучать их эволюцию.
Микроскопическим анализом структуры и поведения хромосом в митозе и мейозе обнаружены изменения в хромосомных наборах растений, животных и человека - хромосомные перестройки (основополагающие работы выполнены американским цитогенетиком Б. Мак-Клинток на кукурузе, 1929-38). В дальнейших исследованиях хромосомные перестройки классифицированы, установлены многие их генетические последствия, влияние на их возникновение ионизирующих излучений. Совершенствование методов исследования позволило приступить к изучению полиморфизма структуры хромосом в природе (работы Н. П. Дубинина с сотрудниками, школы Ф. Г. Добжанского в США, 30-40-е гг.). Последующими работами цитогенетиков обнаружено, что многие хромосомные перестройки, а также явления моносомии (утеря одной хромосомы в хромосомном наборе) и трисомии (добавление одной хромосомы к набору) обусловливают ряд аномалий в развитии и многие заболевания человека. В связи с этим началось интенсивное развитие Ц. человека и генетики медицинской.
Применение в цитогенетике электронной микроскопии, методов радиоактивных изотопов, микрофотометрии, рентгеноструктурного анализа и др. значительно расширило и углубило представления о тонкой структурной организации хромосом, позволило исследовать их вещество и изучать функционирование хромосом в процессах репликации, синтеза рибонуклеиновой кислоты (транскрипция) и белков (трансляция).
С 60-х гг. для решения ряда генетических проблем широко применяется цитогенетический метод культуры соматических клеток. Получила развитие гипотеза о дифференциальной активности генов как основе клеточной дифференцировки (английский ученый Дж. Гердон, 1962-76). В связи с обнаружением дезоксирибонуклеиновой кислоты (ДНК) в хлоропластах и митохондриях (немецкий ученый К. Корренс, 1909, 1937, и др.) развертываются исследования наследственности цитоплазматической и взаимоотношений ее с ядерной наследственностью.
Для цитогенетики 70-х гг. характерно изучение строения и функций хромосом на молекулярном уровне. Данные цитогенетики важны для понимания эволюции кариотипов, а следовательно, процессов видообразования.





Консультации специалистов